Fizica- lectia nr. 3

Acum, dupa ce avem  notiunile cunoscute, marimile si unitatile lor de masura in SI (sistemul international de marimi si unitati) ,  putem trece la esenta unei lectii, unei teme: demonstratia sau deducerea unei legi, unei relatii importante, expresiei unei marimi fizice. Fiindca, o  marime fizica are formula de definitie care arata ce este ea si mai are expresie/expresii   in care vedem in ce relatie se gaseste cu alte marimi din cadrul aceleiasi teme. De exemplu inductia magnetica are formula de definitie B=F/Il si expresia ei, de fapt are mai multe expresii in functie de forma conductorului parcurs de curent electric si care creeaza campul magnetic  caracterizat de inductia B. Asa ca poate fi B=yI/2r, B=yI/2 pi r astea pentru curent circular(o spira)  si curent prin conductor rectiliniu. Folosesc „y” -miu pentru permeabilitatea magnetica fiindca nu am caractere latine pe tastatura.

b) Sa se deduca/demonstreze sau stabileasca: teorema de variatie  a energiei cinetice (DEc) a punctului material, Lucrul  mecanic (L) , caldura (Q) si variatia energiei interne (dU)  ale unei cantitati de gaz ideal  in transformarea izobara, Relatia dintre viteza unghiulara (omega) si viteza tangentiala (v) in miscarea circulara uniforma , Rezistenta echivalenta a gruparii serie si asa mai deprate.

Se deduc expresii de legi, teoreme, relatii intre marimi si expresia unei marimi fizice (alta decat cea de definitie, aceasta nu se deduce, este asa considerata, definita ca atare ).

Teorema de variatie a energiei cinetice a punctului material 

Plecam de la formule deja cunoscute cum ar fi definitia lucrului mecanic, definitia fortei (sau principiul fundamental al mecanicii) si formula lui Galilei (relatia dintre drumul parcurs in miscare uniform variata si vitezele de la capetele drumului ),   adica

L= Fd ;       F=ma  ;  v2″-v1″= 2ad ;   inlocuind  acceleratia in forta si forta in lucrul mecanic rezulta

=> L= mad= m(v2″-v1″)d/2d =( mv2″-mv1″)/2 = mv2″/2- mv1″/2 = DEc , dar mv2″/2= Ec2 si  mv1″/2 = Ec1 si Ec2 -Ec1 = DEc,

 deci  D(delta) Ec= L este expresia teoremei in discutie. Ea se enunta asa:  variatia energiei cinetice a punctului material care se misca in raport cu un sistem de referinta inertial  este egala cu lucrul mecanic  efectuat de forta rezultanta  care actioneaza asupra lui in acel timp.

Observatie : am folosit D= delta= variatia inseamna si se citeste.

am folosit ” in loc de exponentul 2 care inseamna la patrat

 

 Lucrul mecanic, caldura si variatia energiei interne in procesul  izobar

  Procesul izobar este transformarea simpla a gazului ideal in timp ce presiunea se mentine constanta, p=const. Consideram un gaz ideal intr-un cilindru cu piston mobil , astfel ca in interior va fi aceeasi presiune ca si in exterior, deci se mentine constanta.  Gazul actionand cu o forta asupra  pistonul de suprafata S  el, pistonul se deplaseaza cu distanta d, iar gazul se destinde, marindu-si volumul cu DV (delta V ). Folosim definitia fortei, definitia presiunii si rezulta expresia lucrului mecanic intr-o transformare izobara la   p=constant.

L= Fd ;   p=F/S   =>    L= pdS = P(delta) V   fiindca d S este variatia volumului , deci 

L= pDV

Pentru expresia caldurii folosim formula de  definitie a caldurii molare  izobare Cp.

Cp= Q/ niu . DT   => Qp= niu CpDT    ; ( niu este numarul de moli de gaz, Cp este caldura molara izobara si DT este variatia temperaturii )

Iar pentru deducerea expresiei variatiei energiei interne folosim principiul intai al termodinamicii : Q=L + DU

=> DU=Q – L , dar

Q= niu Cp DT  si L= p DV si  pDV = niu RDT(ecuatia termica de stare a gazului ideal scrisa pentru o variatie de temperatura la presiune constanta )

Deci,   L= niu RDT si rezulta   DU = niu CpDT – niu RDT = niu DT ( Cp-R) =  niu Cv DT, unde Cp-R= Cv (caldura molara izocora )

Asa ca  DU = niu CvDT 

Deci,  in transformarea izobara lucrul mecanic, caldura si variatia energiei interne ale  unui numar de moli de gaz ideal se calculeaza cu relatiile: 

L= pDV      Q= niu Cp DT    DU = niu  Cv DT

Relatia dintre viteza unghiulara (omega)  si viteza liniara (v) in miscarea circulara uniforma(omega = constant) 

 

Folosim formulele de definitie ale celor doua viteze care descriu miscarea aceasta si anume: v=Ds/Dt si omega = Dteta/Dt, adica  arcul Ds, unghiul Dteta si intervalul de timp Dt . Si relatia dintre arc,  unghi si raza cercului descris in miscare Ds =  RDteta (arcul este egal  cu raza ori unghiul la  centru corespunzator )

v = Ds /Dt ;  omega = Dteta / Dt ;   Ds = R Dteta  ==> vDt = R omega Dt ==>

v= omega R

O bservatie :  viteza unghiulara (omega ) este constanta iar viteza liniara depinde de raza cercului descris. Cu cat punctul este mai departe de centrul cercului cu atat este mai mare viteza periferica sau tangentiala sau liniara.

Rezistenta elctrica  echivalenta a unei  grupari serie  de rezistoare

Definim gruparea serie a unor consumatori de rezistente R1, R2 si  R3  o grupare prin care trece acelasi curent electric, fara ramificatii. Adica, pusa gruparea sub o diferenta de potential  U  prin rezistoarele de rezistente diferite R1, R2, R3 trece acelasi curent electric de intensitate I.  Se deseneaza schema electrica a gruparii si schema echivalenta.

Se pune intrebarea cu ce rezistenta echivalenta Rs  poate fi inlocuita gruparea,  pentru ca aceasta, pusa sub aceeasi tensiune electrica,  sa fie parcursa de un curent electric de aceeasi intensitate?

Scriem legea lui Ohm pentru fiecare portiune de circuit I=U1/R1 ; I = U2/R2 ; I = U3 /R3  SI  I = U/ Rs dar si relatia dintre diferentele depotential pefiecare rezistor in parte : U = U1 +U2 + U3  si rezulta  Rs I = R1I + R2 I + R3 I si impartind prin I rezulta   ==>

Rs = R1 + R2 + R3  

Observatie : rezistor este un consumator caracterizat prin rezistenta electrica.

pentru n rezistoare de rezistenta identica avem Rs= n R  

 Sa concluzionam . O demonstratie presupune cateva etape si anume formarea unui sistem de relatii cunoscute, incipiente  care pot fi  formule de definitie sau alte relatii cunoscute, le inchidem  intr-o acolada si prin inlocuirea marimilor din una in alta se obtine rezultatul. Rezultatul se marcheaza, se retine, se interpreteaza, se particularizeaza si se foloseste la rezolvarea problemelor de fizica. Unele  demonstratii se incheie cu reprezentarea grafica (ecuatiile) ,  altele cu enunt (legile, teoremele). Acestea sunt doar cateva din toate subiectele care se preteaza la  acest model b) insa, o lectie nu are, de regula, mai  mult  de o demonstratie sau deducere de  formule, dar asta este miezul  lectiei.

Daca ai ajuns pana aici, adica stii marimile si unitatile, le  stii ca simboluri si ca formule de definitie, apoi,  daca stii demonstratiile bazelor teoretice ale  fizicii,  te poti apuca de culegere de probleme. Insa eu te mai ajut cu inca doua modele in lectia urmatoare.

De ce este important sa stim face o deductie, o demonstratie? In primul rand pentru ca asa se rezolva si problemele de  fizica,  stii sa faci o deducere, vei sti sa rezolvi o probmema. In al doilea rand iti ascute mintea si vei putea rezolva si probleme de viata. Apoi, cata  satisfactie ai cand gasesti raspunsul  corect prin efort propriu…cine stie, intelege  🙂

 ACEST TEXT ESTE PROPRIETATE PRIVATA SI   NU POATE  FI PRELUAT FARA ACORDUL AUTORULUI

8 Responses to Fizica- lectia nr. 3

Lasă un răspuns

Adresa ta de email nu va fi publicată. Câmpurile obligatorii sunt marcate cu *

Acest site folosește Akismet pentru a reduce spamul. Află cum sunt procesate datele comentariilor tale.